TY - JOUR T1 - Phylogenetic organization of bacterial activity. JF - The ISME journal Y1 - 2016 A1 - Ember M Morrissey A1 - Mau,Rebecca L A1 - Egbert Schwartz A1 - Caporaso,J Gregory A1 - P Dijkstra A1 - van Gestel,Natasja A1 - BJ Koch A1 - Liu,Cindy M A1 - Hayer,Michaela A1 - McHugh,Theresa A A1 - Jane C Marks A1 - Lance B Price A1 - Hungate,Bruce A KW - Bacteria KW - Biological Evolution KW - Carbon Isotopes KW - Ecology KW - Ecosystem KW - Oxygen Isotopes KW - Phenotype KW - Phylogeny AB -

Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.

VL - 10 SN - 1751-7362 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=26943624&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 9 ER - TY - JOUR T1 - Plant-herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. JF - The New phytologist Y1 - 2016 A1 - Floate,Kevin D A1 - Godbout,Julie A1 - Lau,Matthew K A1 - Isabel,Nathalie A1 - Whitham,Thomas G KW - Alberta KW - Animals KW - Arthropods KW - biodiversity KW - Biological Evolution KW - Chimera KW - Ecosystem KW - Herbivory KW - Hybridization, Genetic KW - Populus KW - Trees KW - Utah AB -

Natural systems of hybridizing plants are powerful tools with which to assess evolutionary processes between parental species and their associated arthropods. Here we report on these processes in a trispecific hybrid swarm of Populus trees. Using field observations, common garden experiments and genetic markers, we tested the hypothesis that genetic similarities among hosts underlie the distributions of 10 species of gall-forming arthropods and their ability to adapt to new host genotypes.the degree of genetic relatedness among parental species determines whether hybridization is primarily bidirectional or unidirectional; host genotype and genetic similarity strongly affect the distributions of gall-forming species, individually and as a community. These effects were detected observationally in the wild and experimentally in common gardens; correlations between the diversity of host genotypes and their associated arthropods identify hybrid zones as centres of biodiversity and potential species interactions with important ecological and evolutionary consequences. These findings support both hybrid bridge and evolutionary novelty hypotheses. However, the lack of parallel genetic studies on gall-forming arthropods limits our ability to define the host of origin with their subsequent shift to other host species or their evolution on hybrids as their final destination.

VL - 209 SN - 0028-646X UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=26346922&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 2 ER - TY - JOUR T1 - Prestoration: Using species in restoration that will persist now and into the future. JF - Restoration Ecology Y1 - 2016 A1 - Butterfield,BJ A1 - Copeland,SM A1 - Munson,SM A1 - Roybal,CM A1 - Wood,TE AB -

Climate change presents newchallenges for selecting species for restoration. If migration fails to keep pace with climate change, as models predict, the most suitable sources for restoration may not occur locally at all. To address this issue, we propose a strategy of “prestoration”: utilizing species in restoration for which a site represents suitable habitat now and into the future. Using the Colorado Plateau, United States, as a case study, we assess the ability of grass species currently used regionally in restoration to persist into the future using projections of ecological niche models (or climate envelope models) across a suite of climate change scenarios. We then present a technique for identifying new species that best compensate for future losses of suitable habitat by current target species. We found that the current suite of species, selected by a group of experts, is predicted to perform reasonably well in the short term, but that losses of prestorable habitat by mid-century would approach 40%. Using an algorithm to identify additional species, we found that fewer than 10 species could compensate for nearly all of the losses incurred by the current target species. This case study highlights the utility of integrating ecological niche modeling and future climate forecasts to predict the utility of species in restoring under climate change across a wide range of spatial and temporal scales.

N1 - [Original String]:Butterfield, B.J., Copeland, S.M., Munson, S.M., Roybal, C.M. and Wood, T.E. (In press). Prestoration: Using species in restoration that will persist now and into the future. Restoration Ecology. ER - TY - JOUR T1 - Process Modeling for Soil Moisture Using Sensor Network Data . JF - Statistical Methodology (Special issue on modern statistical methods in ecology) Y1 - 2014 A1 - Ghosh,S A1 - Bell,DM A1 - Clark,JS A1 - Gelfand,AE A1 - Flikkema,P VL - 12 N1 - [Original String]:Ghosh S, Bell DM, Clark JS, Gelfand AE, and Flikkema P. 2014. Process Modeling for Soil Moisture Using Sensor Network Data . Statistical Methodology (Special issue on modern statistical methods in ecology)12: 99-112. ER - TY - JOUR T1 - Patterns of phytochemical variation in Mimulus guttatus (yellow monkeyflower). JF - Journal of chemical ecology Y1 - 2013 A1 - Holeski,Liza M A1 - Keefover-Ring,Ken A1 - Bowers,M Deane A1 - Harnenz,Zoe T A1 - Lindroth,Richard L KW - Animals KW - Biological Evolution KW - Butterflies KW - Genetic Variation KW - Glucosides KW - Glycosides KW - Herbivory KW - Larva KW - Mimulus KW - Phenols KW - Phenotype KW - Pheromones KW - Plant Leaves AB -

The search for general patterns in the production and allocation of plant defense traits will be facilitated by characterizing multivariate suites of defense, as well as by studying additional plant taxa, particularly those with available genomic resources. Here, we investigated patterns of genetic variation in phytochemical defenses (phenylpropanoid glycosides, PPGs) in Mimulus guttatus (yellow monkeyflower). We grew plants derived from several natural populations, consisting of multiple full-sibling families within each population, in a common greenhouse environment. We found substantial variation in the constitutive multivariate PPG phenotype and in constitutive levels of individual phytochemicals within plants (among leaves of different ages), within populations (among full-sibling families), and among populations. Populations consisting of annual plants generally, but not always, had lower concentrations of phytochemicals than did populations of perennial plants. Populations differed in their plastic response to artificial herbivory, both in the overall multivariate PPG phenotype and in the individual phytochemicals. The relationship between phytochemistry and another defense trait, trichomes, differed among populations. Finally, we demonstrated that one of the PPGs, verbascoside, acts as a feeding stimulant rather than a feeding deterrent for a specialist herbivore of M. guttatus, the buckeye caterpillar (Junonia coenia Nymphalidae). Given its available genetic resources, numerous, easily accessible natural populations, and patterns of genetic variation highlighted in this research, M. guttatus provides an ideal model system in which to test ecological and evolutionary theories of plant-herbivore interactions.

VL - 39 SN - 0098-0331 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=23468225&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 4 ER - TY - JOUR T1 - Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change . JF - Molecular Ecology Y1 - 2013 A1 - CA Gehring A1 - Flores-Rentería,D A1 - CM Sthultz A1 - Leonard,TM A1 - L Flores-Renteria A1 - AV Whipple A1 - TG Whitham VL - 23 N1 - [Original String]:Gehring CA, Flores-Rentería D, Sthultz CM, Leonard TM, Flores-Rentería L, Whipple AV, Whitham TG. 2013. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change . Molecular Ecology 23:1379-1391. ER - TY - JOUR T1 - The Proportion of Three Foundation Plant Species and Their Genotypes Influence an Arthropod Community: Restoration Implications for the Endangered Southwes... JF - Restoration Ecology Y1 - 2013 A1 - RK Bangert A1 - Ferrier,SM A1 - Evans,L A1 - Kennedy,K A1 - Grady,KC AB - As part of a restoration project, multiple genotypes of two tree species, Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii), and one shrub species, Coyote willow (S. exigua), were experimentally planted in different proportions at the Palo Verde Ecological Reserve near Blythe, California, U.S.A. These common woody plant species are important to the endangered southwestern willow flycatcher, providing perch, nesting, and foraging habitat. We conducted this study to evaluate plant species proportion and plant genotype effects on the arthropod community, the prey base for the endangered southwestern willow flycatcher. Three patterns emerged. First, plant species proportions were important; the arthropod community had the greatest richness and diversity (H芒聙虏) when Goodding's willow proportion was high and Fremont cottonwood proportion was lower; that is, fewer Fremont cottonwoods are required to positively affect overall arthropod diversity. Second, we found significant genotypic effects, for all three plant species, on arthropod species accumulation. Third, while both planting proportion and genotype effects were significant, we found that the effect of planting proportion on arthropod richness was about twice as large as the effect of plant genotype. This shows that both plant species proportions and genotype should be utilized in restoration projects to maximize habitat heterogeneity and arthropod richness. Similar studies can determine which planting proportion and specific genotypes may result in a more favorable arthropod prey base for the southwestern willow flycatcher and other species of concern. Greater attention to planting design and genotype can result in significant gains in diversity at little or no additional project cost. VL - 21 UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1526-100X.2012.00910.x/abstract IS - 4 ER - TY - JOUR T1 - Phenotypic variation in nurse traits and community feedbacks define an alpine community. JF - Ecology letters Y1 - 2011 A1 - Michalet,Richard A1 - Xiao,Sa A1 - Touzard,Blaise A1 - David S Smith A1 - Cavieres,Lohengrin A A1 - Callaway,Ragan M A1 - Whitham,Thomas G KW - arizona KW - Ecosystem KW - Genotype KW - Geum KW - Models, Biological KW - Phenotype KW - Plant Leaves KW - Plant Roots KW - Plant Stems KW - Population Dynamics KW - Selection, Genetic AB -

Much is known about facilitation, but virtually nothing about the underlying genetic and evolutionary consequences of this important interaction. We assessed the potential of phenotypic differences in facilitative effects of a foundation species to determine the composition of an Alpine community in Arizona. Two phenotypes of Geum rossii occur along a gradient of disturbance, with 'tight' competitive cushions in stable conditions and 'loose' facilitative cushions in disturbed conditions. A common-garden study suggested that field-based traits may have a genetic basis. Field experiments showed that the reproductive fitness of G. rossii cushions decreased with increasing facilitation. Finally, using a dual-lattice model we showed that including the cost and benefit of facilitation may contribute to the co-occurrence of genotypes with contrasting facilitative effects. Our results indicate that changes in community composition due to phenotypic differences in facilitative effects of a foundation species may in turn affect selective pressures on the foundation species.

VL - 14 SN - 1461-023X UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=21366815&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 5 ER - TY - CONF T1 - Progressive coding and iterative source-channel decoding in wireless data gathering networks . T2 - Proceedings of 2011 IEEE Global Telecommunications Conference Y1 - 2011 A1 - Li,C A1 - PG Flikkema A1 - Howard,SL JF - Proceedings of 2011 IEEE Global Telecommunications Conference T3 - Proceedings of 2011 IEEE Global Telecommunications Conference PB - IEE GLOBECOM CY - Houston, TX, USA N1 - [Original String]:Li C, Flikkema PG, Howard SL. 2011. Progressive coding and iterative source-channel decoding in wireless data gathering networks . Proceedings of 2011 IEEE Global Telecommunications Conference, GLOBECOM 2011; Dec 5-9; Houston. ER - TY - Generic T1 - Prospector: Multiscale Energy Measurement of Networked Embedded Systems with Wideband Power Signals T2 - Proceedings of 12th IEEE International Conference on Computational Science and Engineering Y1 - 2009 A1 - Yamamoto,KR A1 - PG Flikkema AB -

Today鈥檚 wirelessly networked embedded systems underlie a vast array of electronic devices, performing computation,communication, and input/output. A major design goal of these systems is energy efficiency. To achieve this goal, these systems are based on processors with numerous power and clock domains, variable clock rates, voltage scaling, and multiple hibernation states. These processors are designed into systems with sophisticated wireless transceivers and a diverse array of off-chip peripherals, and are linked through regulators to increasingly complexenergy supplies. As a result, modern networked embeddedsystems are characterized by myriad power consumption statesand significant power signal transients. Moreover, their power demands are multiscale in both magnitude and time, combining short bursts of high demand with long intervals of power-sipping sleep states. Thus the power supply signals have wideband spectra. In addition, due to noise, uniform relative precision across magnitude scales requires that measurement time increases with decreasing power. Tools are needed that support modeling, hardware/software optimization, and debugging for energy-centric embedded systems. This paper describes Prospector, an energy data acquisition system architecture for embedded systems thatallows rapid, accurate, and precise assessment of system-level power usage. Prospector uses a distributed control architecture; each component contributes efficiently to control, precision and accuracy, analysis, and visualization. It is based on computer-based control of multimeters to maximize accuracy, precision,铿俥xibility, and minimize target system overhead. Experimental results for a prototype Prospector system with a contemporary 16-bit ultra-low power microcontroller show that it can effectivelymeasure power over the extreme time and magnitude scales found in today鈥檚 embedded systems.

JF - Proceedings of 12th IEEE International Conference on Computational Science and Engineering T3 - Proceedings of 12th IEEE International Conference on Computational Science and Engineering; PB - IEEE CY - Vancouver, Canada VL - 2 UR - http://dl.acm.org/citation.cfm?id=1633490 ER - TY - JOUR T1 - Plant-soil microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. JF - Ecology Y1 - 2008 A1 - Jennifer A Schweitzer A1 - JK Bailey A1 - Fischer,Dylan G A1 - LeRoy,Carri J A1 - Lonsdorf,Eric V A1 - Whitham,Thomas G A1 - Stephen C Hart KW - Biomass KW - Crosses, Genetic KW - Ecosystem KW - Fatty Acids KW - Genetic Variation KW - Genotype KW - Host-Pathogen Interactions KW - Phospholipids KW - Plants KW - Soil Microbiology KW - Species Specificity AB -

Although soil microbial communities are known to play crucial roles in the cycling of nutrients in forest ecosystems and can vary by plant species, how microorganisms respond to the subtle gradients of plant genetic variation is just beginning to be appreciated. Using a model Populus system in a common garden with replicated clones of known genotypes, we evaluated microbial biomass and community composition as quantitative traits. Two main patterns emerged. (1) Plant genotype influenced microbial biomass nitrogen in soils under replicated genotypes of Populus angustifolia, F1, and backcross hybrids, but not P. fremontii. Genotype explained up to 78% of the variation in microbial biomass as indicated by broad-sense heritability estimates (i.e., clonal repeatability). A second estimate of microbial biomass (total phospholipid fatty acid) was more conservative and showed significant genotype effects in P. angustifolia and backcross hybrids. (2) Plant genotype significantly influenced microbial community composition, explaining up to 70% of the variation in community composition within P. angustifolia genotypes alone. These findings suggest that variation in above- and belowground traits of individual plant genotypes can alter soil microbial dynamics, and suggests that further investigations of the evolutionary implications of genetic feedbacks are warranted.

VL - 89 SN - 0012-9658 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=18459340&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 3 ER - TY - JOUR T1 - Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure. JF - Molecular ecology Y1 - 2007 A1 - Wimp,G M A1 - Wooley,S A1 - RK Bangert A1 - Young,W P A1 - Martinsen,G D A1 - Keim,P A1 - Rehill,B A1 - R L Lindroth A1 - Whitham,T G KW - Animals KW - Arthropods KW - DNA, Plant KW - Ecosystem KW - Genetics, Population KW - Plant Extracts KW - Polymorphism, Restriction Fragment Length KW - Population Density KW - Population Dynamics KW - Populus KW - Seasons AB -

With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

VL - 16 SN - 0962-1083 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=17927708&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 23 ER - TY - CONF T1 - The precision and energetic cost of snapshot estimates in wireless sensor networks . T2 - Proceedings of 11th Annual IEEE Symposium on Computing and Communications 2006 Y1 - 2006 A1 - PG Flikkema JF - Proceedings of 11th Annual IEEE Symposium on Computing and Communications 2006 T3 - Proceedings of 11th Annual IEEE Symposium on Computing and Communications 2006 PB - IEEE ISCC ’06 CY - Cagliari Italy N1 - [Original String]:Flikkema PG. 2006.The precision and energetic cost of snapshot estimates in wireless sensor networks . Proceedings of 11th Annual IEEE Symposium on Computing and Communications 2006 (IEEE ISCC ’06); 2006 June 26-29; Cagliari, Italy; p 603-608. ER -