TY - JOUR T1 - Genetics-based interactions of foundation species affect community diversity, stability and network structure. JF - Proceedings of the Royal Society B Biological ... Y1 - 2017 A1 - AR Keith A1 - JK Bailey A1 - Lau,MK A1 - TG Whitham AB - react-text: 446 A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community... /react-text react-text: 447 /react-text [Show full abstract] VL - 284 UR - http://europepmc.org/abstract/MED/28490623 IS - 1854 ER - TY - JOUR T1 - Trees harness the power of microbes to survive climate change JF - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES Y1 - 2017 A1 - Jennifer A. Lau A1 - Jay T. Lennon A1 - Katy D. Heath AB -

Microorganisms are the most abundant and diverse taxa on Earth. They have the ability to tolerate extreme environments, catalyze a range of metabolic functions, and rapidly evolve in response to changing environmental conditions. Imagine if plants and animals could harness these powers. In fact, microorganisms confer numerous benefits to plants and animals. For example, microorganisms in the mammalian gut improve nutrition, reduce susceptibility to disease, and even alter host behavior (1). Some of the most complex microbiomes are found in soils, where they are responsible for nutrient cycling, crop yield, and carbon sequestration (2). In some cases, soil microbes can even rescue plants from the negative consequences of climate change (3). If plants and animals can build associations with specific microbial members that maximize benefits, then harnessing microbial powers may provide rapid and efficient solutions to the challenges resulting from global change.

In PNAS, Gehring et al. (4) show that the relationship between soil microbial communities and plants is not a fortunate coincidence. Instead, some pinyon pine genotypes form associations with different belowground ectomycorrhizal fungal (EMF) communities that help them contend with drought. These EMF communities were responsible for the observed difference in drought tolerance between host tree genotypes. Because these microbial communities are, at least partially, under plant genetic control, EMF community composition is an extended phenotype of the host tree and potentially a mode of adaptation to the increased drought stress pinyon pines face in a changing climate. Given the vast array of biogeochemical and metabolic functions in the microbial arsenal, if similarly tight linkages occur between diverse soil bacterial and fungal communities and host plant genotypes, then host plants may possess a powerful tactic for adapting to environmental change.

VL - 114 UR - https://www.pnas.org/content/114/42/11009 IS - 42 ER - TY - JOUR T1 - Genetically informed ecological niche models improve climate change predictions JF - Global Change Biology Y1 - 2016 A1 - DH Ikeda A1 - Max,TL A1 - GJ Allan A1 - Lau,MK A1 - SM Shuster A1 - TG Whitham ER - TY - JOUR T1 - Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution. JF - Ecology Y1 - 2016 A1 - Lau,Matthew K A1 - Keith,Arthur R A1 - Borrett,Stuart R A1 - Shuster,Stephen M A1 - Whitham,Thomas G KW - Animals KW - Biological Evolution KW - Computer Simulation KW - Food Chain KW - Genetic Variation KW - Genotype KW - Insecta KW - Models, Biological KW - Populus AB -

Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite "genotype-species" network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical "genotype-species network" exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of "genotype-species" networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence eco-ogical dynamics (e.g., assembly and stability) and evolution in a community context.

VL - 97 SN - 0012-9658 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=27197399&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 3 ER - TY - JOUR T1 - Plant-herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. JF - The New phytologist Y1 - 2016 A1 - Floate,Kevin D A1 - Godbout,Julie A1 - Lau,Matthew K A1 - Isabel,Nathalie A1 - Whitham,Thomas G KW - Alberta KW - Animals KW - Arthropods KW - biodiversity KW - Biological Evolution KW - Chimera KW - Ecosystem KW - Herbivory KW - Hybridization, Genetic KW - Populus KW - Trees KW - Utah AB -

Natural systems of hybridizing plants are powerful tools with which to assess evolutionary processes between parental species and their associated arthropods. Here we report on these processes in a trispecific hybrid swarm of Populus trees. Using field observations, common garden experiments and genetic markers, we tested the hypothesis that genetic similarities among hosts underlie the distributions of 10 species of gall-forming arthropods and their ability to adapt to new host genotypes.the degree of genetic relatedness among parental species determines whether hybridization is primarily bidirectional or unidirectional; host genotype and genetic similarity strongly affect the distributions of gall-forming species, individually and as a community. These effects were detected observationally in the wild and experimentally in common gardens; correlations between the diversity of host genotypes and their associated arthropods identify hybrid zones as centres of biodiversity and potential species interactions with important ecological and evolutionary consequences. These findings support both hybrid bridge and evolutionary novelty hypotheses. However, the lack of parallel genetic studies on gall-forming arthropods limits our ability to define the host of origin with their subsequent shift to other host species or their evolution on hybrids as their final destination.

VL - 209 SN - 0028-646X UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=26346922&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 2 ER - TY - JOUR T1 - A genetics-based universal community transfer function for predicting the impacts of climate change on future communities. JF - Functional Ecology Y1 - 2014 A1 - DH Ikeda A1 - Bothwell,HM A1 - Lau,MK A1 - O’Neill,GA A1 - Grady,KC A1 - TG Whitham KW - Acetamides KW - Amines KW - Cyclohexanecarboxylic Acids KW - Dried Blood Spot Testing KW - Fluoroacetates KW - gamma-Aminobutyric Acid KW - Gas Chromatography-Mass Spectrometry KW - Humans KW - Linear Models KW - Reproducibility of Results KW - Sensitivity and Specificity KW - Spectrometry, Mass, Electrospray Ionization KW - Tandem Mass Spectrometry KW - Trimethylsilyl Compounds KW - Valproic Acid VL - 28 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=24889681&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. ER -