TY - JOUR T1 - Extending genomics to natural communities and ecosystems. JF - Science Y1 - 2008 A1 - Whitham,Thomas G A1 - DiFazio,Stephen P A1 - Jennifer A Schweitzer A1 - Shuster,Stephen M A1 - Allan,Gery J A1 - JK Bailey A1 - Woolbright,Scott A KW - Animals KW - Biological Evolution KW - Ecosystem KW - Epigenesis, Genetic KW - Genome, Plant KW - Genomics KW - Plant Physiological Phenomena KW - Plants KW - Selection, Genetic KW - Symbiosis AB -

An important step in the integration of ecology and genomics is the progression from molecular studies of relatively simple model systems to complex field systems. The recent availability of sequenced genomes from key plants is leading to a new understanding of the molecular drivers of community composition and ecosystem processes. As genome sequences accumulate for species that form intimate associations in nature, a detailed view may emerge as to how these associations cause changes among species at the nucleotide level. This advance could dramatically alter views about the structure and evolution of communities and ecosystems.

VL - 320 SN - 0036-8075 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=18436780&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 5875 ER - TY - JOUR T1 - A framework for community and ecosystem genetics: from genes to ecosystems. JF - Nature reviews. Genetics Y1 - 2006 A1 - Whitham,Thomas G A1 - JK Bailey A1 - Jennifer A Schweitzer A1 - Shuster,Stephen M A1 - RK Bangert A1 - LeRoy,Carri J A1 - Lonsdorf,Eric V A1 - Allan,Gery J A1 - DiFazio,Stephen P A1 - Potts,Brad M A1 - Fischer,Dylan G A1 - Gehring,Catherine A A1 - Lindroth,Richard L A1 - Jane C Marks A1 - Stephen C Hart A1 - Wimp,Gina M A1 - Wooley,Stuart C KW - Animals KW - Ecosystem KW - Genetics, Population KW - Humans KW - Plants AB -

Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.

VL - 7 SN - 1471-0056 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=16778835&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 7 ER -