TY - JOUR T1 - Linking soil bacterial biodiversity and soil carbon stability. JF - The ISME journal Y1 - 2015 A1 - Mau,Rebecca L A1 - Liu,Cindy M A1 - Aziz,Maliha A1 - Egbert Schwartz A1 - P Dijkstra A1 - Jane C Marks A1 - Lance B Price A1 - Keim,Paul A1 - Hungate,Bruce A KW - Bacteria KW - biodiversity KW - Biomass KW - Carbon KW - Ecosystem KW - Glucose KW - Isotopes KW - Oxygen KW - RNA, Ribosomal, 16S KW - Soil KW - Soil Microbiology AB -

Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.

VL - 9 SN - 1751-7362 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=25350158&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 6 ER -